uptake procedure 500 μ L of the synaptosome suspension was preincubated for 10 min at 25 °C with 1.9 mL of phosphate medium containing the inhibitor. Then [³H]GABA was added to give a final GABA concentration of 0.05 μ M, and the incubation was continued for a further 10 min. The synaptosomes were isolated by rapid filtration through Whatman GF/C glass fiber filters, and the filters were washed with phosphate medium (10 mL). The filters were transferred to scintillation vials, and the radioactivity was measured by liquid scintillation counting after addition of Liposolve–Lipolume–water (1:10:0.2; 3 mL) (Lumac, Basel). The IC 50 values for inhibition of high-affinity neuronal (synaptosomal) GABA uptake at 0.05 μ M GABA with preincubation of the tissue for 10 min in the presence of inhibitor were

determined as described elsewhere in detail.41

Acknowledgment. This work was supported by a grant from NOVO Research Institute, Bagsvaerd, Copenhagen. R. Malik assisted with the microelectrophoretic investigations, and the technical assistance of P. Searle and the secretarial and technical assistance of B. Hare and S. Stilling are gratefully acknowledged.

(41) Beart, P. M.; Johnston, G. A. R.; Uhr, M. L. J. Neurochem. 1972, 19, 1855.

Synthesis and Antidiarrheal Activity of N-(Aminoiminomethyl)-1H-pyrrole-1-acetamides Related to Guanfacine

Doreen E. Beattie, Gillian M. Dover, and Terence J. Ward*

Wyeth Research (UK), Taplow, Maidenhead, Berkshire SL6 OPH, England. Received January 22, 1985

A series of N-(aminoiminomethyl)-1H-pyrrole-1-acetamides, related to guanfacine, were prepared and tested for antidiarrheal activity in castor oil dosed rats. trans-N-(Aminoiminomethyl)-2,5-dihydro-2,5-dimethyl-1H-pyrrole-1-acetamide (2), in which the dichlorophenyl ring of guanfacine is replaced by 2,5-dimethyl-2,5-dihydropyrrole, showed potent antidiarrheal activity but possessed only minimal cardiovascular activity in rats.

Most currently available antidiarrheal agents exert their activity by an action on cholinergic or opiate receptors. The usefulness of anticholinergic agents is limited by their short duration of action and other anticholinergic side effects such as mydriasis, dry mouth, and blurred vision. Drugs acting at opiate receptors have the potential to produce undesirable CNS effects including addiction. In the search for more specific antidiarrheal agents our attention was directed toward the gastrointestinal actions of clonidine and related α_2 -agonists.^{2,3} In addition to its well-known cardiovascular actions, clonidine increases electrolyte absorption in the intestine⁴ and inhibits castor oil⁵ or naloxone⁶ induced diarrhea in the rat. Antidiarrheal activity has also been reported for the clonidine-related compounds lofexidine⁵ and lidamidine.⁷ The latter compound has been shown to be an effective antidiarrheal agent in man,8 recently launched as liderral in Mexico. In order to exploit the antidiarrheal activity of clonidine-like α -agonists, it is necessary to achieve a separation of their desired gastrointestinal effect from their cardiovascular activity. During the course of studies on a series of heterocyclic analogues of the clonidine-like antihypertensive agent guanfacine,⁹ we synthesized an analogue that retained marked antidiarrheal activity but was free of significant cardiovascular effects.

Chemistry. The primary structural types desired were acylguanidines related to I, in which the dichlorophenyl ring of guanfacine (II) was replaced by a pyrrole or dihydropyrrole ring (Table I).

$$\begin{array}{c|c} \text{Me} & \text{CI} & \text{NH}_2 \\ \hline & \text{NCH}_2\text{CON} & \text{NH}_2 \\ \hline & \text{Me} & \text{CI} \\ \hline & \text{I} & \text{II} \\ \end{array}$$

All of the acylguanidines listed in Table I, except compound 3, were prepared by reaction of an appropriate methyl or ethyl ester with a guanidine (Scheme I). a number of novel dihydropyrrole esters (Table II) were required as part of this work. These were prepared by alkylation of 2,5-dihydro-2,5-dimethylpyrrole¹⁰ with halo acid esters and generally consisted of mixtures of cis and trans isomers in around 1:4 ratio. These mixed isomers were used for the preparation of the trans-acylguanidines (2 and 4-8), since the residual cis isomer was readily removed by crystallization at the final stage of the synthesis. The trans configuration of these acylguanidines was confirmed by examination of their NMR spectra in trifluoroacetic acid. Under these conditions protonation of the ring nitrogen inhibits its rate of inversion and results in nonequivalence of the trans-dimethyl groups that then

⁽¹⁾ Niemegeers, C. J. E. Clin. Res. Rev. 1981, 1 (Suppl. 1), 125.

⁽²⁾ Taylor, J. A.; Mir, G. N. Drug Dev. Res. 1982, 2, 105.

⁽³⁾ Doherty, N. S.; Hanock, A. A. J. Pharmacol. Exp. Ther. 1983, 225, 269.

⁽⁴⁾ Dharmsathaphorn, K.; Yamashiro, D. J.; Lindeborg, D.; Mandel, K. G.; McRoberts, J.; Ruffolo, R. R. Gastroenterology 1984, 86, 120.

⁽⁵⁾ Lal, H.; Shearman, G. T.; Ursillo, R. C. J. Clin. Pharmacol. 1981, 21, 16.

⁽⁶⁾ Nakaki, T.; Chang, P. C. J.; Tokunaga, Y.; Kato, R. J. Pharm. Pharmacol. 1981, 33, 397.

⁽⁷⁾ Mir, G. N.; Alioto, R. I.; Aperow, J. W.; Eash, J. R.; Krebs, J. R.; Yelnosky, J. Arzneim. Forsch. Drug Res. 1978, 28, 1448.

⁽⁸⁾ Leibach, J. R.; Sninsky, C. A.; Justus, P. G.; Riley, R. L.; Mathias, J. R. Gastroenterology, 1981, 80, 1207.

⁽⁹⁾ Scholtysik, G.; Jerie, P.; Picard, C. W. In "Pharmacology of Antihypertensive Drugs"; Scriabine, A., Ed.; Raven Press: New York, 1980; pp 79.

⁽¹⁰⁾ Evans, G. G. J. Am. Chem. Soc. 1951, 73, 5230.

Table I. Acylguanidines^a

	$R_{_1}$			${f R}_3$	cryst solv		yield, ^b	formula ^d	dose, mg/kg po	% inhibn of caster oil induced diarrhea ^c	
no.		Α	R_2			mp, °C	% yield,			2 h	6 h
1	Me N	CH₂CO	Н	Н	EtOH	198.5-200	66	C ₉ H ₁₄ N ₄ O·HCl	30 10 3	96 100 97	96 75 NS
2	Me Me	CH₂CO	Н	Н	MeOH-EtOAc	215-217	49.7	$C_9H_{16}N_4O\cdot 2HCl$	30 10 3 1	100 100 100 92	99 86 NS NS
3	Me Me	CH₂CO	Н	Н	EtOH-EtOAc		78.4	C ₉ H ₁₈ N ₄ O·2HCl· 0.5H ₂ O	30	NS	NS
4	Me Me	CH₂CO	Н	Me	EtOH	199-200	23.8	$C_{10}H_{18}N_4O\cdot 2HCl$	30	88	NS
5	Me Me	CH₂CO	-(C	H ₂) ₂ -	EtOAc	158-160	30	$C_{11}H_{18}N_4O$	30	35	NS
6	Me Me	$(CH_2)_2CO$	Н	Н	IP A	126-127	23	$C_{10}H_{18}N_4O \cdot 2HCl \cdot H_2O$	30	NS	NS
7	Me Me	CH(Me)CO	Н	Н	IP A	206-206.5	17.2	$C_{10}H_{18}N_4O\cdot 2HCl$	30	NS	NS
8	Me Me	coco	Н	Н	H ₂ O	> 200 °	47.5	$C_9H_{14}N_4O_2\cdot 0.5H_2O$	30	NS	NS
9	Me Me	(CH ₂) ₂	Н	Н	EtOH	237-239	47.2	$C_9H_{18}N_4\cdot 2HCl$	30	NS	NS
10	\sim	$H_2CON = \begin{pmatrix} NH_2 \\ NH_2 \end{pmatrix}$			MeOH-EtOAc	209-211.5	21	$C_9H_{16}N_4O \cdot 2HCl$	30 10 3 1	100 100 100 NS	100 52 NS NS
11	Me Me	NH ₂ H ₂ CON N H ₂			IP A	205-208	37.1	$^{\mathrm{C_9H_{16}N_4O\cdot 2HCl\cdot}}$ $^{\mathrm{0.25H_2O}}$	30 10 1	100 100 100	100 45 46
lope	ramide								30 10	98 100	97 99
lidar	nidine								3 30 10 3 1	96 100 100 100 NS	77 100 68 NS NS

 $[^]a$ All compounds exhibited IR and 1 H NMR spectra consistent with the assigned structure. b Yield of analytically pure material, yields not optimized. c Mean percentages; all results analyzed for statistically significant differences from control values using analysis of variance; nonsignificant values (p>0.05) indicated by NS. d C, H, and N analyses were within $\pm 0.4\%$ of theoretical values for the formulas given. e Decomposes. f [α] 22 D + 142.6° (c 0.94, MeOH). g [α] 24 D - 142.8° (c 1.3, MeOH).

appear as two distinct doublets separated by around 15 Hz. A similar nonequivalence of methyl groups would not be expected for the corresponding cis isomers. Compound

2 was subjected to further elaboration by reduction with hydrogen, to give the pyrrolidine 3, or with lithium aluminum hydride to give the alkylguanidine 9 (Scheme I).

Scheme I Me ·NH2 NCH₂CO₂Me NCH₂CON 3 Me NH_2 ICH2CH2N NH₂

Table II. Intermediate Dihydropyrrole Esters^a

97-101

137

Α

CHMe

Et

Me

CH₂

CO

no.

12

13

14

15

9

30.4

61.3

 $C_{11}H_{19}NO_2$

C₉H₁₃NO₃

1:7.7

^a All compounds exhibited IR and H¹ NMR spectra consistent with the assigned structure. b Isomer ratios determined by GLC. °C: calcd, 66.97; found, 65.75.

Compound 2 was of particular interest, and accordingly its individual enantiomers were prepared. The intermediate ester 12 was resolved by crystallization as its dibenzoyl tartrate. The enantiomers of 12 were evaluated for their chiral purity by NMR measurements using the chiral shift reagent tris[3-(trifluoroacetyl)-d-camphoratoleuropium(III) (Eu-Opt). The best NMR separation on the racemate of 12 occurred on the olefinic signal, where a difference of 4 Hz was observed between the two enantiomers. The chiral purity of the two enantiomers was estimated to be greater than 98%. The individual enantiomers of 12 were then reacted with guanidine to give the corresponding enantiomers 10 and 11 of compound 2.

Pharmacology Results and Discussion. The antidiarrheal activity of compounds in Table I was evaluated in the rat castor oil diarrhea test. All of the compounds were tested initially at an oral dose of 30 mg/kg. Total fecal output was measured at 2 and 6 h after dosing. The more active compounds were retested at lower doses as indicated.

The active ingredient in castor oil, ricinoleic acid, produces its laxative effect by parallel inhibition of water absorption and smooth muscle contractility.11 This response of the gut to ricinoleic acid resembles its response to a wide variety of pathological stimuli including bacterially produced hydroxy fatty acids. The rat castor oil

test has been widely used for the identification of antidiarrheal activity in opiate-1 and clonidine-related agents.^{5,7} The test provides readily reproducible results and a reliable prediction of clinical efficacy.1

Initial interest in this series centered upon compound 1 in which the dichlorophenyl ring of guanfacine was replaced by dimethylpyrrole. Compound 1 showed marked antidiarrheal activity, but this was accompanied by marked cardiovascular activity (see later). Since the cardiovascular actions of 1 appeared to be centrally mediated, we reasoned that a hydrophilic analogue, incapable of crossing the hydrophobic blood-brain barrier, might show minimal cardiovascular activity while retaining the desired antidiarrheal activity. Transport of 1 into the CNS could be facilitated by its low basicity, pK_a 6.3, which ensures a substantial proportion of un-ionized molecules are available at physiological pH. Accordingly, we prepared the partially reduced form (2) in which a second basic center, pK, 10.3, is introduced, thus ensuring complete ionization at physiological pH. In accord with expectation, compound 2 showed minimal cardiovascular activity. However 2 retained very marked antidiarrheal activity. Interestingly, the fully reduced pyrrolidine analogue (3) was devoid of both cardiovascular and antidiarrheal activity. Accordingly, further work was concentrated on analogues of 2. The nature of the linkage between the pyrroline and guanidine groups was critical for activity, and the modifications in 6-9 reduced or abolished activity. Similarly, substitution of the guanidine by alkyl groups (4 and 5) was also unfavorable. Finally, the individual enantiomers (10 and 11) of 2 were examined. Both enantiomers of 2 showed marked activity, although the levorotatory isomer (11) was marginally more potent. Of particular interest in this series is the separation achieved between gastrointestinal and cardiovascular activities in compounds 1 and 2. In normotensive rats (Table III), compound 1 produced a severe long-lasting bradycardia and transient hypertension, while compound 2, by contrast, produced only a modest shortlived bradycardia. Both lidamidine and loperamide produced more severe cardiovascular effects than 2. On the basis of these preliminary results, compound 212 was selected for more detailed pharmacological studies, to be reported elsewhere, and is currently undergoing toxicological evaluation.

Experimental Section

Melting points were obtained on a Reichert microscope heating stage and are uncorrected. IR spectra were obtained as Nujol mulls with a Perkin-Elmer Model 521 spectrophotometer. NMR spectra were determined on a Brucker WP200 instrument. C, H, and N analyses were within $\pm 0.4\%$ of theoretical values unless otherwise stated. GLC separations were carried out on a 10% MS200 column at 180 °C using a Pye 104 gas chromatograph. pK_a values were determined in water by potentiometric titration.

Methyl 2,5-Dihydro-2,5-dimethyl-1H-pyrrole-1-acetate (12). Methyl chloroacetate (32.4 g, 0.3 mol) was added dropwise over 10 min to a stirred solution of 2,5-dihydro-2,5-dimethylpyrrole 10 (29.1 g, 0.3 mol) and triethylamine (33 g, 0.033 mol) in 50 mL of DMF. The mixture was allowed to stand for 18 h and then diluted with 75 mL of brine. The organic phase was separated and the aqueous phase washed twice with Et₂O. The combined organic phases were dried and evaporated, and the residue was distilled under vacuum to give the title compound; 34.3 g (68.5%); bp 90-95 °C (15 mm).

trans-N-(Aminoiminomethyl)-2,5-dihydro-2,5-dimethyl-1H-pyrrole-1-acetamide (2). A solution of sodium methoxide was prepared from sodium (2.75 g, 0.12 mol) in 50 mL of methanol. Guanidine hydrochloride (12 g, 0.12 mol) was added to the above

Stewart, J. J.; Gaginella, T. S.; Olsen, W. A.; Bass, P. J. Pharmacol. Exp. Ther. 1975, 192, 458.

Compound 2 (code designation Wy 25021) has been assigned the BAN name "rolgamidine".

Table III. Cardiovascular Activity in Normotensive Ratsa

	n^b	heart rate, beats/min					systolic bp, mmHg				
no.		predose	1 h	2 h	4 h	6 h	predose	1 h	2 h	4 h	6 h
1	6	493	175°	218°	218°	242°	153	193°	159	163	138
2	5	430	3 9 5	373^{d}	418	443	141	133	137	133	134
loperamide	5	438	278^{c}	290°	324^{d}	360^{d}	142	119	117	124	125
lidamidine	5	3 9 3	263^{d}	241^d	261^{d}	298	140	123	132	126	131

^a Mean values for systolic blood pressure and heart rate observed after oral administration of 30 mg/kg of test compound. ^b Number of rats used in each experiment. ^c Significantly different from predose value, p < 0.001. ^d Significantly different from predose value, p < 0.005.

solution and the mixture stirred for 1 h. The ester 12 (13.4 g, 0.08 mol) was then added and the mixture allowed to stand for 18 h. The solvent was evaporated and the residue diluted with 30 mL of $\rm H_2O$ and 60 mL of $\rm Et_2O$. After stirring and ice-cooling the precipitated base was collected, washed with cold $\rm H_2O$, and dried. The base was suspended in 50 mL of IPA and acidified with ethanolic HCl to precipitate the hydrochloride. The hydrochloride was dissolved in 30 mL of hot methanol and diluted with 30 mL of EtOAc. On cooling, the title compound crystallized: 10.7 g (49.7%); mp 215–217 °C; IR (Nujol) 3400, 3220, 1730, 1695 cm⁻¹; NMR (D₂O) δ 1.43 (d, 6 H, 2,5-CH₃), 4.43 (dd, 2 H, CH₂), 4.7 (q, 2 H, 2,5-H), 5.99 (s, 2 H, 3,4-H); NMR (CF₃CO₂H) δ 1.5 (d, 3 H, CH₃), 1.65 (d, 3 H, CH₃), 4.5 (dd, 2 H, CH₂), 5.15 (m, 2 H, 2,5-H). Anal. (C₉H₁₆N₄O·2HCl) C, H, N.

trans-N-(Aminoiminomethyl)-2,5-dimethylpyrrolidine-1-acetamide (3). A solution of 2·2HCl (1.08 g, 0.004 mol) in 15 mL of ethanol was hydrogenated at atmospheric pressure over 10% Pd/C (0.08 g). The catalyst was filtered off, the solvent was evaporated, and the residue was crystallized from ethanol-ethyl acetate (1:1) to give 0.85 g (78.4%): mp 206–209 °C; IR (Nujol) 3640, 3430, 1735, 1605cm⁻¹; NMR (D₂O) δ 1.3 (br s, 6 H, 2,5-CH₃), 1.83 (m, 2 H, 3,4-H), 2.35 (m, 2 H, 3,4-H), 3.75 (br m, 1 H, 2/5-H), 4.25 (br m, 1 H, 2/5-H), 4.3 (dd, 2 H, CH₂); NMR (CF₃CO₂H) δ 1.53 (d, 3 H, CH₃), 1.68 (d, 3 H, CH₃), 2.05 (m, 2 H, 3,4-H), 2.6 (m, 2 H, 3,4-H), 3.9 (m, 1 H, 2/5-H), 4.45-4.65 (m, 3 H, CH₂ + 2/5-H). Anal. (C₉H₁₈N₄O·2HCl) C, H, N.

[2-(trans-2,5-Dihydro-2,5-dimet hyl-1H-pyrrol-1-yl)-ethyl]guanidine (9). A solution of 2 base (1.95 g, 0.01 mol) in 50 mL of dry THF was added to a stirred suspension of lithium aluminum hydride (0.8 g, 0.02 mol) in 50 mL of dry THF. The mixture was stirred at reflux for 4.5 h and then quenched by cautious addition of 3 mL of H_2 0. The precipitated solid was removed by filtration and washed with 50 mL of ethanol. The combined filtrates were evaporated, and the residue was dissolved in 5 mL of ethanol and acidified with ethanolic HCl to precipitate the dihydrochloride: 1.2 g (47.2%); mp 237-239 °C; IR (Nujol) 2640, 1660, 1630, 1360, 755 cm⁻¹; NMR (H_2 0) $hatble{b}$ 143 (d, 6 H, 2,5- H_3 13, 3.35-3.75 (m, 4 H, H_3 14, 4.5 (q, 2 H, 2,5-H), 5.91 (s, 2 H, 3,4-H). Anal. (H_3 15 cm⁻¹ (H_3 160, 7.5 cm⁻¹ (H_3 170, 7.5

Resolution of trans-Methyl 2,5-Dihydro-2,5-dimethyl-1Hpyrrole-1-acetate (12). The racemic ester (12) (13.36 g, 0.08 mol) was added with stirring to a solution of (-)-dibenzoyl-L-tartaric acid monohydrate (15 g, 0.4 mol) in 40 mL of MeOH and 40 mL of IPA. The solution was set aside to crystallize at 4 °C overnight. The crystalline precipitate, crop A (17.2 g), was collected and recrystallized from methanol to give (+)-12 acid (-)-dibenzoyl-L-tartrate: 13.7 g (65%); mp 163–164 °C; $[\alpha]^{23}_{D}$ –1.8° (c 8.68, MeOH). Anal. (C₉H₁₅NO₂·C₁₈H₁₄O₈) C, H, N. The salt was basified with aqueous NaHCO3 and extracted with ether. The ether extract was dried and evaporated, and the residual oil was dried at 0.1 mmHg to give (+)-12: 3g (45%); $[\alpha]^{22}_D$ + 287° (c 0.94, The filtrate obtained after collection of crop A was acidified further with (-)-dibenzoyl-L-tartaric acid monohydrate (15 g) and again set aside to crystallize overnight. The second crop of crystals was collected, washed with IPA, and recrystallized from methanol to give (-)-12 acid (-)-dibenzoyl-L-tartrate: 14.9

g (70.6%); mp 144–145 °C; $[\alpha]^{25}_D$ –142.5° (c 1.94, MeOH). Anal. ($C_9H_{15}NO_2\cdot C_{18}H_{14}O_8$) C, H, N. The salt was basified as previously described to give (–)-12: $[\alpha]^{25}_D$ –269° (c 1.9, CHCl₃).

Chiral Purity of the Enantiomers of 12. The above resolved enantiomers of 12 were examined by NMR in CDCl₃ in the presence of 1.4 mol of Eu-Opt/mol of 12. The best separation of signals was found for the olefinic protons, which occurred at δ 5.90 and 5.92 for (+)-12 and (-)-12, respectively. The chiral purity was determined by integration and estimated to be greater than 98% for each isomer.

Blood Pressure and Heart Rate Measurements in Conscious Rats. Cannulae were implanted under anaesthesia into the left carotid artery of female normotensive rats. The following day they were dosed orally with the test substance in 0.5% hydroxymethylcellulose/0.9% saline vehicle (10 mL/kg) or vehicle alone. Blood pressure was measured from the cannulae, using a Statham P23dB pressure transducer, before dosing and at 1, 2, 4, and 6 h post-dosing. The blood pressure signal triggered a tachometer, and heart rate and blood pressure were displayed on a Grass recorder.

Inhibition of Castor Oil Induced Diarrhea in Rats. Male rats were housed individually in cages with wide-mesh grids to prevent coprophagy, deprived of food, but allowed free access to water, overnight. On the following day the rats were divided into groups of six and dosed orally with the test substance in 0.3% hydroxymethylcellulose/0.9% saline (10 mL/kg) or with vehicle alone. One hour later, each rat was given 1 mL of castor oil, orally, to induce diarrhea. Fecal output was collected on preweighed papers beneath each cage and weighed 2 h and 6 h after castor oil administration. The fecal output in the drug group was expressed as a percentage of the output in the group dosed with vehicle.

Acknowledgment. We thank Dr. K. Heatherington and the members of the Physical Chemistry section for determination of spectral data and microanalyses. We also thank Dr. N. Shepperson and the members of the cardiovascular pharmacology section for the cardiovascular data.

Registry No. 1, 65766-98-5; 1·HCl, 65766-99-6; 2, 97997-38-1; 2·2HCl, 98104-51-9; 3, 97997-39-2; 3·2HCL, 97997-54-1; 4, 97997-40-5; 4·2HCL, 97997-49-4; 5, 97997-41-6; 6, 97997-42-7; 6·2HCL, 97997-50-7; 7, 90717-13-8; 7·2HCl, 66608-07-9; 8, 97997-43-8; 9, 97997-44-9; 9·2HCl, 97997-51-8; 10, 97997-45-0; 10·2HCl, 97997-52-9; 11, 98049-89-9; 11·2HCl, 97997-53-0; trans-12, 97997-46-1; cis-12, 81363-05-5; (+)-12, 97997-58-5; (+)-12·(-)-dibenzoyl-L-tartrate, 97997-59-6; (-)-12, 97997-60-9; (-)-12·(-)-dibenzoyl-L-tartrate, 97997-61-0; trans-13, 97997-47-2; cis-13, 97997-55-2; 14, 66608-06-8; cis-14, 97997-56-3; trans-15, 97997-48-3; cis-15, 97997-57-4; HN=C(NH₂)NHMe, 471-29-4; $BrCH_2CH_2CO_2Et$, 539-74-2; $BrCH(Me)CO_2Et$, 535-11-5; $CICOCO_2Me$, 5781-53-3; methyl chloroacetate, 96-34-4; 2,5-dihydro-2,5-dimethylpyrrole, 59480-92-1; $guanidine\ hydrochloride$, 50-01-1; 2,3-dihydro-2-iminoimidazole, 19437-45-7.